

INTERMIXING REFRESH AND DIRECT VIEW STORAGE GRAPHICS

Ned Thanhouser
Tektronix, Inc.
Beaverton, OR 97005
(503) 638-3411

Presented at SigGraph, 1976

This paper describes an advanced technique in hardware and software for the intermixed display
of refresh and storage graphics. Traditional storage tube terminals have the advantage of Tow
cost coupled with the ability to display large amounts of high resolution graphic information,
but do not provide for dynamic motion and transformation of a displayed image. High resolution,
high density refreshed displays tend to be expensive. Combining both refresh and storage
graphics on the same display allows pictures to be segregated into static and dynamic areas

to achieve the desired results at reduced cost. The hardware and system software to make this
marriage of refresh and storage graphics work effectively for interactive computer graphics is

described.

1. INTRODUCTION

The Direct View Storage Tube (DVST) is known for
low cost high-resolution, high density graphics.
This is achieved by storing images directly on the
face plate of the CRT [1], which eliminates the
need for image regeneration. Now, by adding a fast
constant rate vector generator and a high speed de-
flaction system, an old feature of DVST's known as
"WRITE-THRU" it is now possible to display 1600
centimeters of flicker-free refreshed images along
with stored images. [2] Thus, it is now feasible
to integrate refresh and storage into a single
system, using refresh to display dynamic and
temporary images while the static, complex por-
tions of a picture are displayed in storage mode.

Besides integrating storage and refresh capa-
bility in hardware, it is also necessary to pro-
vide integrated software and system support. The
provision of this support is the novel aspect of
the system described. The user can construct 're-
fresh' and 'storage' pictures with the same com-
mands and can use the Graphic Operating System
facilities to maintain the structured display list
required for refreshed images. [3] This paper
describes that support and the techniques used

in detail.

2. HARDWARE OVERVIEW

The hardware for mixing refreshed and stored
images is diagrammed in figure 1. It consists of

a mini-computer, random access memory, a micro-
coded display controller, and a 19-inch refresh/
storage display unit. On command from the mini-
computer, the display controller accesses the dis-
play Tist in memory via the high speed Direct
Memory Access (DMA) channel. The display list con-
tains beam positioning and status information. The
display controller directs the vector generation
from which a picture is constructed.

PROGRAM

MINI-COMPUTER

MUX. BUS

DISPLAY
CONTROLLER

COMMANDS

19" REFRESH/
STORAGE
DISPLAY

Fig. 1. Hardware for Intermixing Refresh and Direct
View Storage Graphics.

3. SOFTWARE OVERVIEW

The software can be broken down into two major areas:
Application and System (figure 2). The Application
program makes requests to the Graphic Operating
system software for graphic output. Before actual
display, the graphic output is manipulated by the
Graphic Transform Package (GTP). The GTP is re-
sponsible for Rotation, Scaling, Clipping, and
Window/Viewport Mapping. Once transformed, the

Copyright © 1976, Tektronix, Inc.
All rights reserved.

graphic data is passed to the Display Controller
Driver (DCDVR), which builds display 1ists for the
display controller.

APPLICATION
PROGRAM

BLOCK 1/0
REQUEST,

TRANSFORMED
GRAPHIC
OuTPUT
DISPLAY REQUEST GRAPHIC
CONTROLLER TRANSFORM
DRIVER PACKAGE SYSTEM
SOFTWARE
DISPLAY
CONTROLLER

Fig. 2. Software Overview "eOverview

The Display Controller Driver supports a trans-
formed display file [5,6], maintaining separate
display code sequences for each individually iden-
tified refreshed picture. This allows distinct
graphic entities or components to be manipulated
independent of one another. Any graphic output re-
quest which is not identified with a refreshed ob-
ject is directed between refresh cycles to the
storage display.

The DCDVR (figure 3) consists of three major modules.
First is the Display List Generator which is re-
sponsible for taking transformed graphic output
requests and generating display lists, which are
then displayed as stored output or passed to the
second module, the Display List Handler. The Dis-
play List Handler manages the insertion, deletion,
and modification of the refreshed display list.

The third module is the Display Controller Inter-
rupt Service Routine, which is responsible for
starting up a display 1list and switching between
storage and refresh output. Together, these modules
manage the output of storage graphics while main-
taining refresh display lists.

4. GRAPHIC OUTPUT

Graphic Output requests to the Graphic Operating
system are made with a parameter block as outlined
below:

| op-cobE | X Y

TRANSFORMED GRAPHIC OUTPUT REQUEST

|

DISPLAY LIST
GENERATOR
OPEN
APPEND
POST
CLOSE
DISPLAY
STORAGE LIST
QUEUE HANDLER
REFRESH
CYCLE
DISPLAY
CONTROLLER REFRESH
INTERRUPT DISPLAY
SERVICE LIsT
ROUTINE

Display Controller cycles through
the Refresh Display List, outputting
storage graphics between refresh
cycles.

STORAGE/
REFRESH
DISPLAY

UNIT

Fig. 3. Display Controller Driver

The OP-CODE specifies the type of graphics (i.e.,
MOVE, DRAW, DASH, or POINT and ABSOLUTE or RELA-
TIVE), while X and Y fields specify an X-Y coord-
inate pair to which the beam is to be positioned.
For example, to draw a box in storage with sides
of 100 units at (0,0) the following sequence of
vector requests would be made:

0P-CODE X Y
MOVE ABSOLUTE 0 0
DRAW RELATIVE 100 0
DRAW RELATIVE 0 100
DRAW RELATIVE -100 0
DRAW RELATIVE 0 -100

The display controller driver takes these requests
and builds display code in fixed length blocks of
memory. The interrupt service routine outputs the
storage graphics between refresh cycles. When dis-
played, these blocks of memory are re-used for sub-
sequent storage output requests.

5. REFRESH OBJECT CONSTRUCTION

A sequence of vector output requests, 1ike the one
given above, normally generates a stored image. The

display code generated for the picture is traversed
once and discarded. However, the user may condi-
tionally save the display code generated by such a
sequence as a refreshed object. This is done by
preceding vector output requests with an OPEN com-
mand. This builds the display code generated by
graphic output requests into dynamic memory areas.
A CLOSE command stops the display code capturing
process, and any further graphic output reverts to
the storage display. The just-built 'refresh' ob-
ject is not visible on the screen but is available
for individual manipulation as described under Re-
fresh Object Manipulate.

The process of object construction may be summarized
by the following state diagram:

«— CLOSE

VECTORS
OUTPUT TO THE
STORAGE DISPLAY,

VECTORS

VECTORS
BUILD DISPLAY LIST| yecTORS
FOR REFRESHED

OBJECTS
OPEN OR APPEND/

An existing object may have vectors added to it by
an APPEND command. A KILL command deletes the ob-
ject from the system and returns the memory used to
hold the display to the dynamic memory pool.

6. REFRESH OBJECT MANIPULATION

Once an object is built, several manipulation com-
mands can be used to affect its viewing status. A
POST command 1inks the display list for an object
to the refresh display list and thus makes it visi-
ble on the screen. An UNPOST removes the object
from the display 1ist, making it invisible. A
BLINK command causes the object to be automatically
POSTed and UNPOSTed at a regular interval. FIX re-
moves the object from the refresh 1ist and then
displays it in the storage mode. Figure 4 shows a
house partially built by an OPEN sequence, then
finished by an APPEND. The house is then make vis-
ible with a POST, invisible with an UNPOST, drawn
in storage with a FIX, and the display list is dis-
carded with a KILL.

The final object manipulation command, SETPOINT,
allows dynamic modification of the initial X and
Y coordinates of an object under program control.

The first two coordinates of an object are us-
ually an absolute move, referred to as a setpoint,
followed by relative moves and draws. Thus, if the
first absolute move's X and Y coordinates are
changed, then the rest of the picture will be re-
located dynamically. Consider the following example
which defines a box as object number 1:

OPEN OBJECT NO. 1
MOVE ABSOLUTE 0,0

DRAW RELATIVE 100, O
DRAW RELATIVE 0,100
DRAW RELATIVE -100,0
DRAW RELATIVE 0,-100
POST OBJECT NO. 1

This will draw a box with sides of 100 units in re-
fresh at (0,0) on the display. To move the box (ob-
ject number 1) to location (500,1000), the follow-
ing SETPOINT command is given:

SETPOINT OBJECT NO. 1,500,1000
The box will immediately appear at the new location.

REFRESH OBJECT CONTROL REFRESHED SPACE THE DISPLAY
OPEN n*
followed by a series of
wvectors and a CLOSE
APPEND TO n* ey
followed by a series of u} O
vectors and a CLOSE l__]
— T

UNPOST n* (m] a

FIX n* o [m]
.

The thick lines are

storege mode from
Refresh mode.
KILL n*

or
CLEAR

*n refers to 0ne of many uniges abjects, sach which may be
manipulated seperatly.

Fig. 4. Refreshed Object Manipulation

Note also what happens if the second vector of an
object is a draw absolute, e.g.,

OPEN OBJECT NO. 4
MOVE ABSOLUTE 0,0

DRAW ABSOLUTE 100,100

POST OBJECT NO. 4

Now, any SETPOINT commands to object number 4 causes
the refreshed vector from the first move absolute
to the draw absolute to follow 1like a rubber band,
with one end anchored at 100,100. Many variations

of this can be used for dragging and rubber band
applications.

7. THE DISPLAY CONTROLLER

An Exchange Display Status Command initiates the
sequence which allows the Display Controller to ac-
cess the display lists residing in memory.

When an Exchange Status Command is given, the dis-
play controller swaps all its current status re-
gisters with the contents of the status block in
memory. The display code pointed to by the just-
loaded block is started. This exchange of status

is also used to interrupt a display list to let a
new section of display code execute. The first list
resumes execution where it was interrupted at the
receipt of another Exchange Status Command. Essen-
tially, the Exchange Status may be viewed as a form
of co-routine call.

An elementary use of the Exchange Status command
would display two different pictures, A and B, each
with its own status. One set of display contextual
registers would be in the display controller for the
current picture, and the other would be in an Ex-
change Status block. When display of picture A is
finished, the current status block is swapped and
picture B is started. When picture B is done, an-
other exchange is made and picture A is now swapped
in. Note that only one Exchange Status block is
needed, since the status of the current picture
being displayed.is kept in the display controller
registers.

l EXCHANGE 1]7

PICT PICT

A B
EXCHANGE 1

Each box represents an independent segment of dis-
play code, while the number following "EXCHANGE"
refers to the status block used during the Exchange
Status sequence. If more than two segments of dis-
play code are to be displayed, more than one status
block can be used. For example, with three pictures:

|
EXCHANGE 1,2,1,2,... EXCHANGE 1,2,1,2,...
¥

PICT PICT PICT
A B C
l

EXCHANGE 2,1,2,1,...

This method is useful if pictures are always swapped
on a rotating basis. It has the disadvantage that

3. Two Exchange Status Commands must be given
to start a different display 1ist. The first
references the current picture status block,
and the second references the new block.
This provides simple, fast selection of log-
ically different pictures.

4. Addition and deletion of pictures is easy
in the general case.

5. This method performs the same function as
separate 'save status' and 'restore status'
commands, but uses only one command.

8. DISPLAY CONTROLLER DRIVER IMPLEMENTATION

The Display controller Driver consists of the three
major modules mentioned before: the Display Code
Generator (DCG), the Display List Handler (DLH),
and the Display Controller Interrupt Service
Routine (DCISR). The DCG passes information to the
DCISR via the Display Output Queue (DCOQ) (Figure 5).
A storage vector output request to the DCG causes
display code to be built in fixed length blocks of
memory. These blocks are Tinked together by a dis-
play branch command. Once the storage graphics

have been displayed, the fixed length blocks are
re-used for subsequent storage output requests.
Character output causes ASCII to be passed to the
DCISR where it is converted to display code and
traversed. Commands such as erase or make copy are
also passed on the DCOQ (figure 6).

ocoa

A

ERASE COMMAND

DISPLAY CODE FOLLOWS
—— .,,,//”/’/— r
FIRST BLOCK

DISPLAY
a different block each time it resumes the same .
picture. In general, for n pictures, n-1 status LASTBLOCK &~
blocks would be needed using this scheme. x\<;_
HARD COPY COMMAND
For a more general use of the Exchange Status com- = [—
mand, a "Dummy" display list ic used to allow ran-
dom selection of any segment of display code and to X POSITION ST FIXED LENGTH
keep each segment associated with one status block. cooE /- oispLay cooe
Thus, three pictures could be implemented as ¥ POSITION DISPLAY
follows:
CHARACTER = CHARACTER —_
EXCHANGE 1 EXCHANGE 3
PICTI ey cnance 1] 2UMMY T Ecuance 3 [PIST e
A STOP . c CHARACTER | CHARACTER DISPLAY
TLLIST | cooe
EXCHANGE 2 A ' EXCHANGE 2 icmucn:n CHARACTER :
PICT LVMN ARG
B

The dummy 1ist contains only a "STOP" and an "INTER-
RUPT" command. Thus, this use of Exchange Display
Status has the following characteristics:

1. Any picture may be interrupted and restarted
at any time.

2. Each picture has a fixed status block as-
sociated with it.

Fig. 5. Display Controller Output Queue Format.

Programs and asynchronous interrupting devices,
such as the keyboard, and communications which re-
quire single character echoing make entries on the
Echo Queue (ECHOQ) by calling the routine ANECHO.
In order to prevent input queues from overflowing,
this queue is given higher priority than the DCOQ.

KBDVR - Keyboaed Driver
KBIN- Dequeue 1 character from K8Q

KBQ -Keybeard queue

KBISR - Keyboard interrupt service rostine
ANECHO -Single character echo queue routine
ECHOQ-A/N acho queue

DCISR ~Display controller interrupt service routine
DCOQ-Dusglay controller outpst queve
DCG-Duplay code generator

CHARACTER
"

l I KEYBOARD

& s cHaracTeR
GENERATOR TABLE

DISPLAY CONTROLLER DRIVER

Fig. 6.

Vector output requests to the display code gene-
rator which have been preceded by an OPEN or
APPEND, cause the display code to be built into
fixed length areas of dynamic memory. The Display
List Handler (DLH) links these blocks of display
code to the refresh 1ist when POSTed, unlinks them
when UNPOSTed, etc. A CLOSE or POST command causes
all further vector output to be directed to the
storage display, until an OPEN or APPEND starts the
process again.

Figure 7 shows the data structure used for man-
aging the refreshed objects. Each refreshed ob-
ject has an entry in the Refreshed Objects Table.
Flags are kept in this table for each refreshed
object to indicate its status, e.g.,

Existing or Non-existing object

Object under construction, i.e., after OPEN
but not CLOSEd

Posted or not posted

Blinking or not blinking

Blink rate and current blink count

Pointer to first and last block of display
code

Posting an object is thus: finding the last block
of the preceding object, modifying its branch ad-
dress to the first block of the object to be posted;
and setting the branch address in the last block

of the object to be posted to the first block of
the next posted object. Unposting is a simple re-
versal of the above. Blinking is accomplished by
automatic posting and unposting of an object by

the DCISR.

Performing an exchange status for each object would
burden the minicomputer with an excessive amount
of interrupts if many objects were being displayed.
Only one Exchange Status block is used for the re-
fresh 1ist (there are four other Exchange Status
blocks: STORAGE OUTPUT, CHARACTER OUTPUT, ECHO
OUTPUT, and DUMMY LIST). The first portion of each
refreshed object's display code contains a mini-
status block. This includes a series of Load

Display Controller Status Register Commands to set
the correct status for the object. Only one Exchange
Status Command to start the display 1ist for all re-
freshed objects is required. The mini-status block
insures that the correct status is set in the dis-
play controller for that object. The last object
links to an immediate command, stop display 1list

and generate interrupt. This interrupt signals the
DCISR that the refreshed display 1ist has been
traversed. The DCISR, in this condition, checks for
characters to be echoed on ECHOQ, and then for
storage output, text or commands on DCOQ. Each of
the display requests, e.g., storage output, is
started by an Exchange Status Command and ended by

a Stop display with Interrupt Command in the dis-
play code. If there are no outstanding requests,

the "Dummy" 1ist is swapped in.

—
UNPOSTED

OBJECTS

///' e

]

NOT POSTED l
——————— OBJECT No. 1

| BLINKING, POSTED] i
f—] OBJECT N0. 2 | — — e e — — REFRESH
[— DISPLAY
—— e ety |) usr
Pe—————
POSTED
|
0BJECTNO.3 — — — — — —
—_—
—— ===
[‘ -
| \ DOES NOT EXIST
_
P »ou(cvmc"————————-——‘
MINI-
STATUS

OBJECTNO.5 | . o o e e

L2 1 L]
/ / — OBJECT No. 6
/
—f— | I
THE REFRESHED OBJECTS
TABLE
| Shortenad for wmphicity |
| >
— REFRESH STOP AND
J STow INTERRUPT BLOCK

Fig. 7. Refreshed Objects Data Structure

A special refresh timer indicates when the refreshed
image should be regenerated to maintain. the image
on the screen. When it is time for a new refresh
cycle, the processor is interrupted and control is
given to a special routine in the DCISR. If the
refresh 1ist is still running at the time the re-
fresh timer interrupts (i.e., the refresh list
takes Tonger to display than one refresh timer
cycle), the interrupt is ignored and flicker is al-
lowed to occur. If no 1ist is running, the DCISR

is activated and the refresh 1ist restarted.

Note that all storage output, including character
generation, is done between refresh cycles. Our
initial design called for interruption of executing

display of a storage list (via an Exchange Status
Command) if the refresh timer interrupted. If the
refresh Tist being displayed took longer to dis-
play than one refresh cycle, then, at most, a
single storage vector would be outputted per re-
fresh cycle. Thus, with a large refresh picture
being displayed, only 40 storage vectors per second
would be displayed. This technique was abandoned
in favor of outputting a large number of storage
vectors, uninterrupted, between refresh cycles.
Using this technique, intermixing large amounts of
refresh and storage does not affect the speed of
storage graphic output, nor does it noticeably in-
crease the flicker of the refresh image already
exceeding the display cycle time.

9. CONCLUSION

This paper has described the software and hardware
used to allow the intermixing of storage graphic
output while maintaining a refreshed image. The
Exchange Display Status Command provides a great
amount of flexibility not discussed here. For ex-
ample, refresh pictures could be prioritized, and
those of a higher priority prevented from flicke-
ring by interrupting other lower priority re-
freshed display lists. Exchange Status might also
be used as an alternative method of character
echoing. Instead of queuing a character to be dis-
played at the end of the next refresh cycle, the
echoing routine could simply Exchange Status, in-
terrupt the current display list, and start the
display 1ist to generate the character echo. When
done, another exchange status would resume the
original display list. Nonetheless, the imple-
mentation described demonstrates that it is pos-
sible to intermix Refresh and Direct View Graphics
in a consistent and effective manner that is still

flexible and easy for an application programmer
to use.

ACKNOWLEDGMENTS

Credit must be given to Dean Bailey and Roger
Handy for their foresight in the design of the
Display Controller hardware and to Larry
Koenigsberg who did the initial design and imple-
mentation of the Display Controller Driver soft-
ware. Also, thanks must go to Jon Meads for his
invaluable assistance in preparing this paper.

REFERENCES

[1] Anderson, Robert H., Storage Cathode-Ray
Tubes and Circuits, Tektronix, Inc.,
Beaverton, Oregon, 1968.

[2] Cheek, Thomas B., "Improving the Performance
of DVST Display Systems", 1975 SID Inter-
national Symposium Digest Technical Papers,
April, 1975.

[3] Koenigsberg, L. K., et. al., "A Graphics
Operating System", Proceedings of the Second
Annual Conference on Computer Graphics and
Interactive Techniques, COMPUTER GRAPHICS
Siggraph-ACM, Vol. 9, #1, Spring, 197/5.

[4] Newman, Wm. and R. F. Sproull, Principles of
Interactive Computer Graphics, McGraw-Hill,
New York, 1973.

[5] Newman, Wm. and R. F. Sproull, "An Approach
to Graphic System Design", Proceedings of the
IEEE, Vol 62, #4, April, 1974.

[6] Sproull, R. F. and Elaine Thomas, A Network
of Graphic Protocol, Network Graphics Group,

ARPA Network Information Center, Stanford
Research Institute, 1973.

Tektromx lnc W
lnformat«m@xsplay & ‘uo

PO BOX600<5

Beayanon, ‘Qregon Q7077 :
sTelenfiona: (50336383411

'Teldx: 910_-407 8708

nﬂbhc«nen superspdf»s Az
aréviouslyznublished snatérial;
S A “a Rorelan Prbduets, Q‘
“Tektronixsiic: dre covered by -
,U SUAC and-Eoreion Patdnlc :
anc, Br P én:s'f?nnmnq

