
TE K INFORMATION
FOR TECHNOLOGISTS MARCH 1984

TECHNOLOGY
report

HE
RCH ITE ____ ,_ ~

EVOLUTI IJ
~HIG~==============~I

RF;ORMA=fFl:#!~ II_ -1 =
GRAPHIC -:--c:c c:::c:-::~ ::_ c-=-;-_j I

TER INA

COMMITTED TO EXCELLENCE

THE 4115B:
THE ARCHITECTURAL EVOLUTION
OF A HIGH-PERFORMANCE
GRAPHICS TERMINAL

Douglas J. Doornink is a senior electronic engi­
neer in Graphic Systems Products (GSP). He was
the leader of the hardware development project
for the 41158. After joining Tek in 1974, he par­
ticipated in the design of the 4112, 4027, 4025,
4024, and 4081. Doug holds an MSEE from Stan­
ford University. His 8SEE is from the University of
Washington.

John C. Dalrymple is a senior electronic engineer
in Graphic Systems Products. He lead the team that
developed the picture processor for the 41158.
John joined Tek in 1976 and has done research in
color anti-aliasing, display-processor architecture
for directed-beam refreshed displays, and display­
processor architecture for intelligent oscilloscopes.
John's MSEE and 8SEE are from Oregon State
University.

This article is a case study of the design of the Tektronix
4115B. It details the design constraints, shows how the ar­
chitecture evolved from the Tektronix 4113, and shows how
performance was gained by adding a microcoded picture
processor and some special-purpose hardware. This arti­
cle was adapted from a paper given at Spring COMPCON,
1984.

The task given the designer is usually not to design the "best"
or ultimate product but rather to squeeze the most out of a de­
sign - given many constraints. These constraints range all the
way from how much the customer is willing to pay to how big
the product can or must be. In 1981, the GSP engineering
group was asked to design a. "high-performance" graphics
terminal.

High performance in computer graphics requires interactivity,
and interactivity hinges on the speed at which an image can be
produced or changed on the screen. The system must respond
to the user in the appropriate amount of time, or productivity will
suffer and frustration will increase. The challenge for the design­
ers of a high-performance graphics terminal is to squeeze out
the most speed given a set of real-world constraints.

This article reviews the design of the Tektronix 4115B and, in
particular, the picture processor. First, we will discuss the back­
ground and motivation behind the design; this discussion will

analyze the Tektronix 4113 and its performance bottlenecks. We
will then discuss the system partitioning of the 4115B and the
tradeoffs made, show how the right balance of hardware and
microcode can substantially increase performance, and look at
how the completed design performs.

Background and Motivation

Even though most engineers would like to start each new de­
sign from the ground up, this is not the job usually given. Be­
cause most products are not designed in a vacuum, product
design means specific requirements and hard constraints. Prod­
ucts are designed within an environment that includes other
products, customer desires, and technology limitations. This
was very much the case with the design of the Tektronix 4115B
graphics terminal.

Functional requirements

Since the 4115B was to be a member of the 4110 family, the
most important functional requirement was family compatibility.
The 4110 family was modeled after the SIGGRAPH CORE, 1

which includes the ability to store and transform picture seg­
ments. Compatibility with all the 4110 family commands was
necessary. There were raster display commands implemented
in the 4112 and 4113. These commands were similar to those in
the Raster Extension to the Core System. 2 Compatibility with all
raster and color features of the Tektronix 4113 was necessary
because it was the only color-raster member of the 4110 family.

Because the 12-bit coordinate system in the then current 4110
family was inadequate for many applications being addressed
by computer graphics, a 32-bit coordinate system requirement
was added to the design goals. This extension had to be com­
patible with the old 12-bit system, of course.

In addition, the 4115B was to be compatibile with ANSI X3.64
alphanumeric control commands. This would allow the terminal
to be used with the many alphanumeric-oriented programs
available. This compatability was essential. Even though the
4115B is a high-performance graphics terminal, it is frequently
used for alphanumeric data entry and editing. Most users ex­
pect their $20,000 terminal to be able to do what their $500 ter­
minal can do.

TECHNOLOGY 3
REPORT

Performance requirements

Interactivity is the primary requirement of a high-performance
graphics terminal. Another word for interactivity is speed. To be
interactive in a man-machine environment, the lonistanding
rule of thumb was "response within two seconds. " This rule
has been superseded because exposure to personal computers
and single-user systems has increased user expectations.4 Func­
tions done locally on a terminal are expected to be done quick­
ly, if not instantaneously.

On the 4110 terminals, this meant that the re-draw and manipu­
lation of picture segments, which are stored locally in the ter­
minal, must be done quickly. Dragging and transforming of
segments should happen instantly. Picture segments of several
thousand vectors are not unusual; pictures with tens of thou­
sands of vectors are common.

Another performance requirement was high display quality.
1280 x 1024 pixels is now mandatory for a high-resolution dis­
play. For picture stability, 60-Hz noninterlaced scanning is re­
quired; anything less tires users with flicker.

A third requirement was that the new terminal must support a
display of 256 colors simultaneously. This meant at least eight
bits per pi xel , or eight planes of display memory.

Physical constraints

The 4115B was to be an addition to a family; this predetermined
physical constraints. The 4110 family was pedestal based; there­
fore the 4115B had to fit into the pedestal . (See figure 1(A).) The
established card cage had room for only 18 circuit cards; all of
the display system plus all options had to fit. We knew six circuit
cards would be needed for the display memory and controller
and that nine would be needed for the options common to the
411 O family. We could use only three 8.5 x 11-inch boards for
the picture processor (figure 1(8)). This definitely restricted the
amount of circuitry that could be used for the picture processor.

The power for the system as a whole was fi xed at 500 watts.
This limit was important when it came to making tradeoffs be­
tween hardware, software, and microcode in the system
architecture.

Technological constraints

Because the development schedule for the 4115B was to be
short, we had to use off-the-shelf parts - no custom VLSI. We
also had to use as many existing 4110 circuit cards as we could.
This meant staying with the processor (8086), option cards, and
bus structure used in the previous 4110 terminals. This limited
system architecture to 1-M byte address space and 16-bit data
paths.

Bottlenecks in the 4113

The 4113 was the functional model for the 4115B, but the 4113
had some shortcomings for high-performance graphics; the
most important was its picture-segment re-draw speed. The
4113 outputs constant-time vectors to the screen at about 1000
fully transformed vectors per second.

4 TECHNOLOGY
REPORT

~ - ,~ .251~,

]~[I I r
,-.; >-

= =
oc ~ 1'18- \ \ 8.5 IN.

' 1--i ~ L
l l

1
(b)

13 IN .

j
17 IN .

~
~

~

(a)
[®

Figure 1. (a) Front view of the 411 5B pedestal. The card­
cage dimensions, and (b) circuit-card dimensions were
the primary physical constraint for th new terminal.

Also, the 4113 couldn 't keep up with u t in d communications
at 19.2 kilobaud. The 411 3 could u t in nly 9600 baud without
overflowing the communic ti n ulr r.

8086 overloaded

In the 4113, there is ad fin it im
firmware.

tween hardware and

Data flow in the 4113

Figure 2 shows the data flow in the basic 4113. The data origin­
ates from one of three sources: the RS-232 interface, the key­
board, or the graphic input devices. After going through the
command interpreter, the communication system, or the graphic

RS-232

input system, all data - except report data - goes to the display
driver. The display driver is shown in detail in figure 3. The heart
of this driver is the transform system: Ultimately, all of the data
paths lead to the transform system, and the hardware is not in­
voked until the very end of the data flow.

DISPLAY
H/W

I
H/W
SPECIFIC

INPUT
DEVICES

PICK DATA AND CURSOR POSITIONS

Figure 2. 4113 basic data flow. Data originates from three sources: the RS-232 interface, the keyboard, graphic input
devices. The display driver is shown in detail in figure 3.

VIEW LIST

m HARDWARE

• FIRMWARE

Figure 3. 4113 display-driver data flow. Ultimately, all paths lead to the heart of the system, the transform system. The
hardware is a slave to the 8086, invoked only at end of data flow. There was a software/hardware unbalance.

TECHNOLOGY 5
REPORT

BRESENHAM'S LINE-DRAWING ALGORITHM

Bresenham 's algorithm is designed so that each iteration changes one of the coordinate values by ± 1. The other coordinate
may or may not change, depending on the value of an error term maintained by the algorithm. This error term records the dis­
tance, measured perpendicular to the axis of greatest movement, between the exact path of the line and the actual dots gener­
ated. In the example below, where the x axis is the axis of greatest movement, the error term e is shown measured parallel to
the y axis. The following description of the algorithm assumes this particular orientation of the line.

At each iteration of the algorithm the slope of the line, 1:,,.y/1:,,.x, is added to the error term e. Before this is done, the sign of e is
used to determine whether to increment the y coordinate of the current point. A positive e value indicates that the path of the
line lies above the current point; therefore the y coordinate is incremented, and 1 is subtracted from e. If e is negative the y co­
ordinate value if left unchanged. Thus the basic algorithm is expressed by the following PASCAL program:

{Note: e is real ; x, y, deltay are integers}
e: = (deltay/deltax)- 0.5;
tor i: = 1 to de/tax do begin

P!ot(x,y);
if e > O then begin

y:=y+1;
e:=e - 1
end;

x:=x+ 1;
e: = e + (deltay/deltax)

end;

The weakness of this sequence of operations lies in the division required to compute the initial value and increment of e. This
division can be avoided, however, since the algorithm is unaffected by multiplying e by a constant: only the sign of e is tested.
Thus by multiplying e by 21:,,.x we produce the following program, requiring neither divisions nor multiplications:

{Note: all variables are integers}
e: = 2 • deltay - de/tax;
for i: = 1 to de/tax do begin

Plot(x,y);
if e > O then begin

y:=y+ 1;
e: = e + (2 • deltay - 2 • de/tax)
end
else e: = e + 2 • deltay;

x:= x+ 1
end;

A full implementation of Bresenham's algorithm involves allowing for other cases besides O ~1:,,.y~/:,.x, the case discussed above.
At the same time the algorithm can be somewhat simplified by using only integer ari thmetic. Bresenham's algorithm avoids gen­
erating duplicate points. Because it also avoids multiplications and divisions, it is w II suited to implementation in hardware or
on simple microprocessors.

In addition to performing few processes by hardware, the 4113
used a low-level interface to the hardware vector generator. The
firmware had to calculate all the parameters for a Bresenham
vector algorithm5 and load the parameters into registers on the
vector generator. The Bresenham algorithm was then executed
in the hardware.

6 TECHNOLOGY
REPORT

- From Principles of Interactive Graphics, Newman and Sproull

Breaking The Bottlenecks

Adding a picture processor

To achieve the design goals of the 41 15, we had to open the
bottlenecks of the severely overloaded 8086 and mostly idle
vector-generator hardware. We took a conventional approach:

~ MICROCODE

Ill HARDWARE

Figure 4. 4115B display-driver data flow. We offloaded lower-level graphics processing from the 8086 by replacing the
vector-generator hardware with a microprogrammable bit-slice "picture processor. "

replacing the vector-generator hardware with a microprogram­
mable bit-slice "picture processor," so that the lower-level
graphics-processing functions could be offloaded from the
8086. This new division of labor can be seen in figure 4. Along
with the bit slice, this processor contains several hardware ac­
celerators for speed-critical tasks. It was constrained to fit on
two standard-sized (11 .25 x 8.5 in) cards.

The 4115B picture processor is an instruction-set processor that
executes programs (display lists) built by code running on the
8086. The initial specification of the display-list format was done
by software engineers who were designing the 8086 code and
by microcoders who would be implementing the instruction set.
The specification evolved as the implementation proceeded;
however, task partitioning between the 8086 and the picture
processor did not change drastically after the first specification.

8086 tasks

In the 4115B, the 8086 retains the multitasking operating system,
host communication, peripheral management, and display-list
management functions discussed in the description of the 4113.
The code significantly differs from that of the 4113 in several key
areas:

(1) Most data paths are now 32-bits wide to support the 32-bit
coordinate space.

(2) New algorithms and data structures allow faster, more
space-efficient creation of many small graphic segments.

(3) New code drives the hardware dialog overlay and cursor
overlay (not present in the 4113) .

(4) The numeric co-processor (8087) is used for the precise
arithmetic operations needed to generate graphic-image
transforms for the picture processor.

Additionally, the 8086 assists the picture processor in the scan
conversion of panels (filled areas). For this task, the picture pro­
cessor transforms coordinates from the display list and sends
them to the 8086. The 8086 then builds temporary data struc­
tures, which it passes back to the picture processor. The picture
processor uses these data structures to compute and fill the set
of pixels interior to the specified area. Finally, the 8086 deletes
the temporary structures.

Picture processor tasks

The picture processor executes commands from a display list
resident in system memory. It transforms graphic primitives,
described in a 32-bit integer coordinate space, into 1280 x 1024
pixel screen-coordinate space and clips the results to rectangu­
lar viewports on the screen. It scan converts the transformed
primitives and writes pixels into the frame buffer. Using informa­
tion from the display list, the picture processor controls the ap­
pearance parameters (primitive attributes such as line style,
whether areas are to be filled or left hollow, background trans­
parency of dot-matrix characters, etc.).

TECHNOLOGY 7
REPORT

The picture processor can traverse a display list in one of three
modes. In the default mode, all attribute commands are obeyed
and all visible portions of primitives are drawn. In the erase
mode, all visible portions of primitives are drawn in a solid color
(fixed when the mode is entered) and the attribute-setting com­
mands are ignored. In the pick mode, nothing is drawn; instead,
the picture processor informs the 8086 about items that would
have intersected the viewport. In this case, the 8086 has given
the viewport the size and position of a very small pick aperture.

Adding hardware to the picture processor

When a user is locally panning and zooming on a retained pic­
ture, the entire picture must be re-transformed and re-drawn
each time the "view" key on the terminal is pressed. A principal
design goal for the 4115B was to both speed up local redraw to
at least 20 times that of the 4113. It was clear that some hard­
ware help for point transformations would be beneficial. Also, in
increasing drawing speed, vectors would need much attention
since terminal applications were vector intensive. Therefore, we
optimized picture-processor hardware for vector-drawing speed.
The following sections describe how we partitioned tasks be­
tween the 4115B picture-processor hardware and its microcode.

Display-list traversal

Since the picture processor is an independently executing proc­
essor, it must acquire the system bus and perform data trans­
fers to and from system memory and 1/0 devices. In the 4115B,
the details of these low-level operations are hidden from the
microcode. Two hardware state machines (both resident in one
registered PAL) implement the bus acquisition and data-transfer
protocols.

The machines are activated by a single microinstruction. The
microcode can then continue executing until it needs the results
of a bus-read or until it tries to start another bus operation. At
that time, a hardware "wait" mechanism temporarily halts the
picture processor until the original cycle has been completed.
Thus, microcode does not have to test any status flags to see if
a transfer has been completed prior to starting another transfer.

The terminal bus has 20 address bits (referencing 1 Mbyte) and
16 data bits. Maximum bus bandwidth is obtained by perform­
ing 16-bit transfers on even-address boundaries. The picture­
processor instruction set (display list) consists of one- and two­
byte opcodes, with operand lengths ranging from zero to tens
of bytes.

Most operands are immediate data following an opcode. There­
fore, a display-list fetch-ahead system was built in microcode.
Routines needing operands from the display list make subrou­
tine calls to this system, which manages a three-byte fetch­
ahead queue and always does 16-bit bus transfers at even
addresses.

If the execution of an opcode references data from outside the
instruction stream, another set of subroutines is used, which de­
stroys information in the queue. These may be eight- or 16-bit
transfers at arbitrary addresses. The queue state must be re­
stored (by calling a subroutine) before the next opcode is fetched.
Transfer-of-control opcodes flush and refill the queue.

8 TECHNOLOGY
REPORT

20 point transformation

To assist in transforming points from 32-bit terminal-coordinate
space to screen-coordinate space, we added low-cost serial/
parallel multiplier hardware to the picture processor. This hard­
ware consists of two 24-bit shift registers linked in a ring with
two 25LS14 chips, 6 which are controlled by a hardwired state
machine and a combinational PAL.

Like the bus-data transfer circuitry, this hardware is activated
by, and can operate in parallel with, microcode. Data items are
loaded by microcode into the shift registers and the multiplicand
is input to the 25LS14s. Then, a control register is loaded with a
shift-count value.

When the control register has been loaded, the state machine
automatically switches the clock period for the 25LS14s and
shift registers from 163 nsec/cycle to 65 nsec/cycle and begins
shifting and decrementing the shift counter. During this time,
any microinstruction that attempts to access or change the data
in the 25LS14s, shift registers, or control register will be held off
by the wait mechanism described previously.

The shift operation is completed when the shift counter reaches
zero, and the result of the multiplication is read by microcode
from the shift registers. Up to 48 x 48-bit multiplications are per­
formed using multiple passes and partial-product accumulation
in microcode.

Scan conversion

Scan conversion is the process of converting primitive descrip­
tions (such as vector endpoints or polygon vertices) together
with attribute information (such as line color or area-fill pattern)
into the set of pixel addresses in the frame buffer to be modified
and into the pixel data to be written at those addresses.

The 4115B includes special frame-buffer-interface (FBI) hard­
ware, resident on one standard-sized card. It is designed to
hide the details of frame-buffer memory organization from the
picture processor. The frame buffer appears as a 20 array of
8-bit pixels. Also included in the FBI hardware are X- and Y­
address registers (both registers can be incremented, decre­
mented, held, or loaded on each cycle) and two sets of pixel­
data registers. Either set of registers can be selected on each
microcycle. A four-pixel cache with automatic swapping hard­
ware contains a copy of the current frame-buffer region being
accessed by the picture processor.

The FBI is augmented by additional hardware on the picture
processor for boosting vector performance. The control signals
that drive the FBI can come either directly from the current
microinstruction (during vector setup) or from a 32-deep FIFO
memory that queues up address-stepping and data-register­
selection commands for the FBI. These commands are used
during the actual drawing of vectors. The address-stepping
commands trace out the trajectory of the vector, and the data­
register-selection commands select between foreground and
background colors for dashed lines.

During vector drawing, special hardware around the bit-slice
processor allows the inner loop of Bresenham's algorithm[5l to
execute in a single 163-nsec cycle. During each cycle of this loop,
a bit is generated that selects one of two inputs to the FIFO pipe­
line: (1) step the FBI address along the long axis of the vector,
or (2) step diagonally one unit in the direction of both axes.

Simultaneously, a bit from the dash pattern (stored in the same
shift registers used for multiplication) is loaded into the FIFO pipe­
line, and the shift registers are rotated one bit position. As long
as the FIFO is not full, it wi ll accept input at the full 163-nsec/pix­
el rate. The FIFO is emptied by the FBI at an average rate of
about 1 µsec/pixel.

When the FIFO fills up, the wait mechanism holds off further in­
puts until the FBI has unloaded the FIFO. Also, the wait mecha­
nism prevents direct microcode access to the FBI as long as the
FIFO is not empty. Because of the FIFO, the fetching and setup
of a vector can be overlapped with the writing of the previous
vector's pixels into the frame buffer.

For scan conversion of solid-filled areas, up to 80 pixels at a time
(along a scan line) are written into the frame buffer. When an
area is to be filled with a pattern consisting of two colors, the
FIFO and the two pixel-data registers are used. When an area is
filled with a general fill pattern (arbitrary size up to the limit of
system memory and up to 8 bits per pixel), there is no hardware
help.

Three area-fill algorithms are implemented in the microcode:

(1) A speed-optimized rectangle-fill algorithm with trivial rejec-
tion and clipping for rectangles whose sides are vertical and
horizontal.

(2) A microcode-only algorithm for unclipped polygons with up
to 16 sides.

(3) A general panel algorithm for areas that may be clipped, may
have holes in them, and are unrestricted as to the number
of edges.

In the general panel algorithm, the picture processor passes
transformed vertices to the 8086 (through a shared buffer in sys­
tem memory) and the 8086 builds data structures for the micro­
code to use when it fills the panel. Because of the handshaking
overhead the general panel algorithm has the slowest panel­
filling performance.

System Performance

It is not enough to say "the system must be fast" and use that state­
ment as a design goal. To know if the design is good enough,
one must have numbers against which design-goal achieve­
ment can be measured. Early in the design of the 41158, we
established performance metrics that we felt were appropriate in
light of the application targets for the 41158. Our metrics dealt
with drawing speed: vectors per second, segments per second,
and simple panels per second. All of these metrics assumed the
application of a 2D transform as part of the drawing process.

After analyzing sample pictures from typical applications, we
determined that the average vector length was 10 pixels on a
1280 x 1024 display. Pictures in this category averaged 30,000
vectors; pictures with longer vectors typically have fewer vec­
tors . The worst-case application had only one vector per seg­
ment, while in the best case, all vectors would be in one seg­
ment. Both cases needed benchmarking because each picture
segment incurs significant picture-processor overhead .

Another important picture type uses "simple panels" - simple
panels have fewer than 16 edges. A prime example of simple­
panel use is in a solids model that uses a mesh description and
generates the image with a lot of quadrilaterals. For these images,
the quadrilaterals have an area of about 100 pixels. In other applica­
tions, such as VLSI CAD, the areas to be filled are even simpler -
rectangles whose sides are vertical and horizontal. For CAD ap­
plications, we benchmarked rectangle-fill performance using
rectangles with an area of 100 pixels.

Comparing Performance: 41158 vs. 4113

Figure 5 compares the 4115B with the 4113 using the previously
defined metrics. The performance gained by adding a microcoded
picture processor is dramatic. The line-drawing performance
gained by adding the FIFO is shown in figure 6.

10

~ 41158

• 4113

100 1 k

50 k

"""-'"""""""""""""'""~ SHORT VECTORS/SEC

10 k 100 k

'FROM DISK FILE - NOT IN A DISPLAY LIST

Figure 5. 4115B versus 4113 performance. Scale is
logarithmic. Performance metrics assume that graphic
primitives are repainted from retained segments.

TECHNOLOGY 9
REPORT

u
w
(/)

3

40

30

~ 20 -L--- ---;~-- ---
i= \
a:
0
>-
0
w
> 10

160 NSEC/PI XEL

0 L-------~--~-------.---,--------,
10 15 20 25

VECTOR LENGTH (PIXELS)

Figure 6. 4115B vector drawing performance. The effect
of having a FIFO between the picture processor and the
frame buffer can be clearly seen . The initial slope is 163
nsec per pixel (microcode instruction time). The final
slope is 1.22 msec, the worst-case rate for writing pixels
to the frame buffer.

30

From figure 6, one can see that the basic setup time for a vector,
including the transform time, is about 18 µsec. The initial slope is
163 nsec per pixel , the microcode instruction time. As the FIFO
becomes more than half full, the output port has priority and we
see the knee in the curve. The final slope of the graph is 1.22
µsec per pixel , which is the worst-case rate at which the pixels
can be written into the frame buffer.

It is also interesting to compare the performance of the 4115B with
that of other architectures and implementations. Four architec­
tures are compared in figure 7. The 4113 is at one end of the
spectrum, an example in which a single microprocessor does
most of the work. We included the Apollo DN420 as an example

4113 11 k

APOLLO DN420 I 11-2 k"

4115B

SE/LLAC-7

I I

1 k 10 k

of a graphic system having a microprocessor and hardware op­
timized for BITBLT-type functions. The third example is the
4115B, in which the work is divided between a microprocessor
and a microcoded picture processor. The final example is the
Seillac-7 in which the work is done by a pipeline of a 32-bit bit­
slice processor, two 16-bit bit-slice processors, two 16-bit micro­
processors, a 4 x 4 matrix multiplier, a clip circuit, and a
perspective ci rcuit.

Remaining Issues

The 4115B project did not address several functional extensions
and performance issues: we did not implement 30 transforms or
picture-segment hierarchy, although these are natural extensions
to the 4115B feature set. The main reason these features are not
in the 4115B now is that our resources were limited. When we
prioritized features, these two fell below the cut line.

Another functional issue is standardization, GKs[7l in particular.
Tektronix supports GKS as a standard, but since the 4110 family
was not an implementation of GKS, the 4115B could not imple­
ment GKS and still be a part of the 4110 family.

Some performance areas were not addressed by the 4115B proj­
ect. Although one can do picture dynamics on the 4115B, it was
never designed to do animation; the performance necessary for
animation was beyond the scope of the 4115B.

We did not attempt more than eight planes, which would allow
the display of more than 256 colors at a time. Restricting the
4115B to eight planes was necessary because of limits in the
frame-buffer system - not because of picture processor capacity.

Finally, we did not optimize the system for BITBLT-type opera­
tions as has been done in some work-station architectures. The
Apollo DN420 engineering work station is a good example of
this architecture. Our application and system architecture re­
quired optimization toward line drawing.

SHORT VECTORS
PER SECOND

150 k

1400 k

I
100 k 1M

"ESTIMATE, DEPENDS ON APPLICATION

Figure 7. Vector-drawing performance of different architectures.

--1 0 TECHNOLOGY
I REPORT

Conclusion

The architecture development of the 4115B was an evolutionary
step rather than a revolutionary jump. The main reason for this
was the set of constraints placed on the project and architecture
by the product-family environment in which it was developed. In
spite of this, dramatic performance improvements were made,
and the requirements of interactivity were met by adding a micro­
coded picture processor and partitioning the work among firm­
ware, microcode, and hardware. Because of this balancing,
brute force was not necessary for high performance.

References

(1] "Status Report of the Graphics Standards Planning Com­
mittee of ACM/SIGGRAPH," published as Computer
Graphics, vol. 11 , no. 3 (Fall, 1977).

(2] "Status Report of the Graphics Standards Planning Com­
mittee of ACM/SIGGRAPH," published as Computer
Graphics, vol. 13, no. 3 (August 1979).

(3] J. Martin, Design of Man-Computer Dialogues, Prentice­
Hall: Englewood Cliffs, N.J. (1973).

[4] J.D. Foley and A. Van Dam, Fundamentals of Computer
Graphics, Addison-Wesley: Reading, Mass. (1982).

[5] J.E. Bresenham, "Algorithm for Computer Control of
Digital Plotter," IBM System Journal, vol. 4, no. 1 (1965).

[6] "Bipolar Microprocessor Logic and Interface," Advanced
Micro Devices, Sunnyvale, CA (1983).

[7] Graphical Kernel Standard (GKS) International Standards
Organization (ISO) Draft International Standard (DIS)
7942.

TECHNICAL STANDARDS
Technical Books Available

The Technical Standards library of technical volumes is growing.
Here are some recent additions:

Mark's Standard Handbook for Mechanical Engineers, a
dictionary.

IEEE Standard Dictionary of Electrical and Electronic Terms.

IEEE STD 141-Recommended Practice for Electric Power
Distribution for Industrial Plants.

If your interest is in a field affected by standards, we may have
the book you need. You don't have to buy; we'll lend it.

Books and Reports

IOOC '81 - Third International Conference on Integrated Op­
tics & Optical Fiber Communication - April 27-29, 1981. This is
a technical digest. A number of test procedure documents from this
document are also available. May be purchased or borrowed.

NTIS - Directory of Computer Software Applications on Energy
- Available for loan .

NASA - A Catalog of Selected Computer Programs - Title, number
and a brief description of the program included. Available for
loan.

New Standards

EIA-RS-505 - Packaging for Return CRT Glass Component

EIA-RS-455-47-1983, FOTP-47, Output Far-Field Radiation Pattern
Measurement, $6.00

EIA-RS-455-51-1983 , FOTP-51 , Pulse Distortion Measurement of
Multimode Glass Optical Fiber Information Transmission Capacity,
$6.00

EIA-RS-455-87-1983, FOTP-87, Fiber Optic Cable Knot, $5.00

ANSI X3.99-1983, Optical Character Recognition (OCR) - Guide­
lines for OCR Print Quality, $6.00

ANSI X3.103-1983, Unrecorded Magnetic Tape Minicassettes
for Information Interchange, Coplanar 3.81 mm (0.150 in) $6.00

Information regarding standards, publications, and workshops
can be obtained by contacting Technical Standards, 627-1800,
Leah D'Grey.

TECHNOLOGY 1 1
REPORT I I

	20250620_153403_0005
	20250620_153433_0006
	20250620_153505_0007 - Copy
	20250620_153505_0007
	20250620_153534_0008 - Copy
	20250620_153534_0008
	20250620_153605_0009 - Copy
	20250620_153605_0009
	20250620_153634_0010 - Copy
	20250620_153634_0010

